Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In order to better understand manifold neural networks (MNNs), we introduce Manifold Filter-Combine Networks (MFCNs). Our filter-combine framework parallels the popular aggregate-combine paradigm for graph neural networks (GNNs) and naturally suggests many interesting families of MNNs which can be interpreted as manifold analogues of various popular GNNs. We propose a method for implementing MFCNs on high-dimensional point clouds that relies on approximating an underlying manifold by a sparse graph. We then prove that our method is consistent in the sense that it converges to a continuum limit as the number of data points tends to infinity, and we numerically demonstrate its effectiveness on real-world and synthetic data sets.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Free, publicly-accessible full text available June 30, 2026
- 
            Abstract The randomized Kaczmarz methods are a popular and effective family of iterative methods for solving large-scale linear systems of equations, which have also been applied to linear feasibility problems. In this work, we propose a new block variant of the randomized Kaczmarz method, B-MRK, for solving linear feasibility problems defined by matrices. We show that B-MRK converges linearly in expectation to the feasible region. Furthermore, we extend the method to solve tensor linear feasibility problems defined under the tensor t-product. A tensor randomized Kaczmarz (TRK) method, TRK-L, is proposed for solving linear feasibility problems that involve mixed equality and inequality constraints. Additionally, we introduce another TRK method, TRK-LB, specifically tailored for cases where the feasible region is defined by linear equality constraints coupled with bound constraints on the variables. We show that both of the TRK methods converge linearly in expectation to the feasible region. Moreover, the effectiveness of our methods is demonstrated through numerical experiments on various Gaussian random data and applications in image deblurring.more » « less
- 
            Abstract In this paper we consider the problem of recovering a low-rank Tucker approximation to a massive tensor based solely on structured random compressive measurements (i.e., a sketch). Crucially, the proposed random measurement ensembles are both designed to be compactly represented (i.e., low-memory), and can also be efficiently computed in one-pass over the tensor. Thus, the proposed compressive sensing approach may be used to produce a low-rank factorization of a huge tensor that is too large to store in memory with a total memory footprint on the order of the much smaller desired low-rank factorization. In addition, the compressive sensing recovery algorithm itself (which takes the compressive measurements as input, and then outputs a low-rank factorization) also runs in a time which principally depends only on the size of the sought factorization, making its runtime sub-linear in the size of the large tensor one is approximating. Finally, unlike prior works related to (streaming) algorithms for low-rank tensor approximation from such compressive measurements, we present a unified analysis of both Kronecker and Khatri-Rao structured measurement ensembles culminating in error guarantees comparing the error of our recovery algorithmโs approximation of the input tensor to the best possible low-rank Tucker approximation error achievable for the tensor by any possible algorithm. We further include an empirical study of the proposed approach that verifies our theoretical findings and explores various trade-offs of parameters of interest.more » « less
- 
            The problem of benign overfitting asks whether it is possible for a model to perfectly fit noisy training data and still generalize well. We study benign overfitting in two- layer leaky ReLU networks trained with the hinge loss on a binary classification task. We consider input data that can be decomposed into the sum of a common signal and a random noise component, that lie on subspaces orthogonal to one another. We characterize conditions on the signal to noise ratio (SNR) of the model parameters giving rise to benign versus non-benign (or harmful) overfitting: in particular, if the SNR is high then benign overfitting occurs, conversely if the SNR is low then harmful overfitting occurs. We attribute both benign and non- benign overfitting to an approximate margin maximization property and show that leaky ReLU networks trained on hinge loss with gradient descent (GD) satisfy this property. In contrast to prior work we do not require the training data to be nearly orthogonal. Notably, for input dimension d and training sample size n, while results in prior work require d= !(n2 log n), here we require only d= ! (n).more » « less
- 
            The problem of benign overfitting asks whether it is possible for a model to perfectly fit noisy training data and still generalize well. We study benign overfitting in two- layer leaky ReLU networks trained with the hinge loss on a binary classification task. We consider input data that can be decomposed into the sum of a common signal and a random noise component, that lie on subspaces orthogonal to one another. We characterize conditions on the signal to noise ratio (SNR) of the model parameters giving rise to benign versus non-benign (or harmful) overfitting: in particular, if the SNR is high then benign overfitting occurs, conversely if the SNR is low then harmful overfitting occurs. We attribute both benign and non- benign overfitting to an approximate margin maximization property and show that leaky ReLU networks trained on hinge loss with gradient descent (GD) satisfy this property. In contrast to prior work we do not require the training data to be nearly orthogonal. Notably, for input dimension d and training sample size n, while results in prior work require d= !(n2 log n), here we require only d= ! (n).more » « less
- 
            Free, publicly-accessible full text available March 31, 2026
- 
            We analyze inexact Riemannian gradient descent (RGD) where Riemannian gradients and retractions are inexactly (and cheaply) computed. Our focus is on understanding when inexact RGD converges and what is the complexity in the general nonconvex and constrained setting. We answer these questions in a general framework of tangential Block Majorization-Minimization (tBMM). We establish that tBMM converges to an ๐-stationary point within ๐(๐โ2) iterations. Under a mild assumption, the results still hold when the subproblem is solved inexactly in each iteration provided the total optimality gap is bounded. Our general analysis applies to a wide range of classical algorithms with Riemannian constraints including inexact RGD and proximal gradient method on Stiefel manifolds. We numerically validate that tBMM shows improved performance over existing methods when applied to various problems, including nonnegative tensor decomposition with Riemannian constraints, regularized nonnegative matrix factorization, and low-rank matrix recovery problems.more » « less
- 
            We analyze inexact Riemannian gradient descent (RGD) where Riemannian gradients and retractions are inexactly (and cheaply) computed. Our focus is on understanding when inexact RGD converges and what is the complexity in the general nonconvex and constrained setting. We answer these questions in a general framework of tangential Block Majorization-Minimization (tBMM). We establish that tBMM converges to an $$\epsilon$$-stationary point within $$O(\epsilon^{-2})$$ iterations. Under a mild assumption, the results still hold when the subproblem is solved inexactly in each iteration provided the total optimality gap is bounded. Our general analysis applies to a wide range of classical algorithms with Riemannian constraints including inexact RGD and proximal gradient method on Stiefel manifolds. We numerically validate that tBMM shows improved performance over existing methods when applied to various problems, including nonnegative tensor decomposition with Riemannian constraints, regularized nonnegative matrix factorization, and low-rank matrix recovery problems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available